Viscoelastic 2D drop in a Couette Newtonian shear flow

    This problem has been used as benchmark (see for example Chinyoka et al. (2005)). Equations are usually made dimensionless with the outer density \rho_2, the droplet radius a and the shear rate \dot{\gamma}. The following dimensionless parameters appear \displaystyle We = \frac{\rho_2 a^3 \dot{\gamma}^2}{\sigma}, \quad Re = \frac{\rho_2 a^2 \dot{\gamma}}{\mu_2}, \quad \mu_r =\frac{\mu_1}{\mu_2}, \quad m = \frac{\rho_1}{\rho_2}, \quad \beta = \frac{\mu_s}{\mu_1}, \quad De = \dot{\gamma}\lambda where subscript “1” and “2” stand for the droplet and matrix fluid respectively and \mu_s is the solvent viscosity. Note that the polymeric viscosity is \mu_p=\mu_1-\mu_s.

    #include "navier-stokes/centered.h"
    #include "two-phase.h"
    #include "log-conform.h"
    #include "tension.h"
    #define Ca 0.6     // Capillary number
    #define Re 0.3     // Reynold number
    #define We (Ca*Re) // Weber number
    #define MUr 1.     // ratio of outer(matrix) to inner(drop) viscosity
    #define M 1.       // ratio of outer to inner density
    #define Deb 0.4    // Deborah number
    #define Beta 0.5   // ratio of the solvent visc. to the total viscoelastic visc.

    We set a maximum level of 8 only so that the test case runs in less than 30 minutes but note that the results presented below are for MAXLEVEL = 9.

    int MAXLEVEL = 8;
    scalar mupd[], lam[];

    The top and bottom boundary conditions are those of a Couette flow.

    u.t[top] = dirichlet (y);
    u.t[bottom] = dirichlet (y);

    The domain is a 16x16 box which will be masked later to a bottom-left corner of the domain of coordinates (x=-8, y=-4). We set a maximum timestep of 0.1

    int main() {
      L0 = 16 ;
      origin (-L0/2, -L0/4.);
      periodic (right);
      DT = .1;

    We set the viscosities, densities, surface tension and visco-elastic parameters according to the analysis above.

      mu1 = MUr*Beta/Re;
      mu2 = 1./Re;
      rho1 = M;
      rho2 = 1.;
      f.sigma = 1./We;
      lambda = lam;
      mup = mupd;
      init_grid (1 << MAXLEVEL);
    event init (i = 0) {

    We mask above y > 4. The computational domain is now a 16x8 rectangle with the origin in the center.

      mask (y > 4 ? top : none);

    As initial conditions we set a viscoelastic droplet of radius 1 and a linear velocity profile typical of the Couette flow.

      fraction (f, 1. - (sq(x) + sq(y)));
        u.x[] = y;
      boundary ((scalar *){u});

    The event below set viscoelastic properties at each step. The dimensionless relaxation parameter is the Deborah number, De, while the dimensionless polymeric viscosity \mu_p is \displaystyle \frac{\mu_p}{\rho_2 a^2 \dot{\gamma}} = \frac{\mu_1 - \beta \mu_1}{\rho_2 a^2 \dot{\gamma}} = \frac{1-\beta}{Re}\frac{\mu_1}{\mu_2}

    event properties (i++) {
      foreach () {
        lam[] = Deb*f[];
        mupd[] = MUr*(1. - Beta)*f[]/Re;
      boundary ({lam, mupd});

    The mesh is adapted according to the errors on volume fraction and velocity.

    event adapt (i++) {
      adapt_wavelet ({f, u}, (double[]){1e-2, 1e-3, 1e-3}, MAXLEVEL, MAXLEVEL - 2);

    As outputs we plot the shape of the interface at instant t = 10 and the time evolution of the deformation parameter.

    event interface (t = 10.) {
      output_facets (f);
    event deformation (t += 0.1) {
      double rmax = -HUGE, rmin = HUGE ;
      foreach (reduction(max:rmax) reduction(min:rmin)) 
        if (f[] > 0 && f[] < 1) {
          coord p;
          coord n = mycs (point, f);
          double alpha = plane_alpha (f[], n);
          plane_area_center (n, alpha, &p);
          double rad  = sqrt(sq(x + Delta*p.x) + sq(y + Delta*p.y)); 
          if (rad > rmax)
    	rmax = rad;
          if (rad < rmin)
    	rmin = rad;
      double D = (rmax - rmin)/(rmax + rmin);
      fprintf (stderr, "%g %g %g %g\n", t, rmin, rmax, D);

    We can optionally visualise the results with Basilisk View while we run.

    #if 0
    #include "view.h"
    event viewing (i += 10) {
      static FILE * fp = popen ("bppm","w");
      view (width = 600, height = 300, fov = 10);
      draw_vof ("f");
      // squares ("u.y", linear = true);
      squares ("level");
      save (fp = fp);

    We compare the results to those of Figueiredo et al. (2016).

    set xlabel 't'
    set ylabel 'D'
    set key bottom Right
    plot 'viscodrop.figueiredo' u 1:2 pt 7 t 'Figueiredo et al. (2016)', \
         'viscodrop.log-9' u 1:4 w l lw 2 t 'Basilisk'
    Time evolution of the deformation (script)

    Time evolution of the deformation (script)

    set xlabel 'x'
    set ylabel 'y'
    plot 'viscodrop.interface' u 1:2 pt 7 t 'Figueiredo et al. (2016)', \
         'viscodrop.out-9' u 1:2 w l lw 2 t 'Basilisk'
    Interface shape at t = 10 (script)

    Interface shape at t = 10 (script)



    T Chinyoka, YY Renardy, M Renardy, and DB Khismatullin. Two-dimensional study of drop deformation under simple shear for Oldroyd-B liquids. Journal of Non-Newtonian Fluid Mechanics, 130(1):45–56, 2005.


    RA Figueiredo, CM Oishi, AM Afonso, IVM Tasso, and JA Cuminato. A two-phase solver for complex fluids: Studies of the Weissenberg effect. International Journal of Multiphase Flow, 84:98–115, 2016.